Renormalisation of the Two-Dimensional Border-Collision Normal Form

Indranil Ghosh, David J. W. Simpson

School of Mathematical and Computational Sciences Massey University, Palmerston North, New Zealand

July 5, 2022

Border-collision normal form

- ▶ Piecewise-linear maps arise when modeling systems with switches, thresholds and other abrupt events.
- ▶ In our project, we study the two-dimensional *border-collision normal form* [H.E. Nusse and J.A. Yorke, 1992], given by

$$f_{\xi}(x,y) = egin{cases} egin{bmatrix} au_L & 1 \ -\delta_L & 0 \end{bmatrix} egin{bmatrix} x \ y \end{bmatrix} + egin{bmatrix} 1 \ 0 \end{bmatrix}, & x \leq 0, \ au_R & 1 \ -\delta_R & 0 \end{bmatrix} egin{bmatrix} x \ y \end{bmatrix} + egin{bmatrix} 1 \ 0 \end{bmatrix}, & x \geq 0. \end{cases}$$

▶ Here $(x,y) \in \mathbb{R}^2$, and $\xi = (\tau_L, \delta_L, \tau_R, \delta_R) \in \mathbb{R}^4$ are the parameters.

Banerjee-Yorke-Grebogi region in parameter space

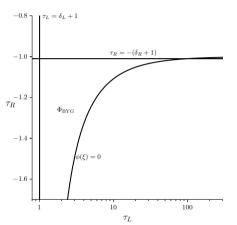


Figure: Sketch of the parameter region $\Phi_{\rm BYG}$ [S. Banerjee, J.A. Yorke, and C. Grebogi. Robust chaos. *Phys. Rev. Lett.*, 80(14):3049–3052, 1998.], with $\delta_L = \delta_R = 0.01$.

Phase portrait of a chaotic attractor

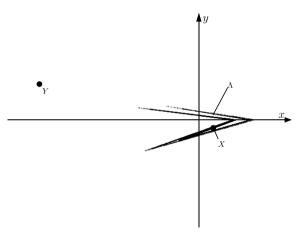


Figure: A sketch of the phase portrait of f_{ξ} with $\xi \in \Phi_{\mathrm{BYG}}$.

Renormalisation I

- Renormalisation involves showing that, for some member of a family of maps, a higher iterate or induced map is conjugate to different member of this family of maps.
- ▶ The renormalisation technique (Feigenbaum, 1970's) proves that the bifurcation values in period-doubling cascades for one-dimensional unimodal maps converge at a constant rate ($F \simeq 4.669...$), which is universal. For example, the *logistic map* given by

$$\mathsf{x}_{n+1} = \mu \mathsf{x}_n (1 - \mathsf{x}_n),$$

has the following bifurcation diagram.

Renormalisation II

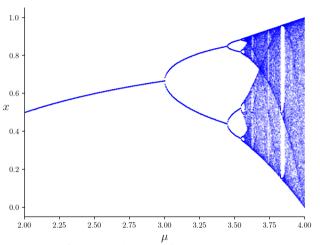


Figure: Bifurcation diagram for the logistic map.

Renormalisation IV

Let $\mathfrak U$ denote the collection of all unimodal maps $f:[-1,1]\to [-1,1]$, with maximum at x=0, and with f(0)=1. Then, the renormalisation operator $\mathfrak R:\mathfrak U\to\mathfrak U$ is given by,

$$(\mathfrak{R}f)(x) = -\frac{1}{a}f^2(-ax),$$

provided,
$$a = -f(1)$$
, $b = f(a)$, $0 < a < b < 1$ and $f(b) < a$.

The fixed point of \mathfrak{R} is *hyperbolic*. One of its eigenvalues has modulus greater than 1, and this eigenvalue is Feigenbaum's constant F [Feigenbaum, 1975].

Renormalisation operator I

▶ Although the second iterate f_{ξ}^2 has four pieces, relevant dynamics arise in only two of these. We have

$$f_{\xi}^{2}(x,y) = \begin{cases} \begin{bmatrix} \tau_{L}\tau_{R} - \delta_{L} & \tau_{R} \\ -\delta_{R}\tau_{L} & -\delta_{R} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} \tau_{R} + 1 \\ -\delta_{R} \end{bmatrix}, & x \leq 0, \\ \begin{bmatrix} \tau_{R}^{2} - \delta_{R} & \tau_{R} \\ -\delta_{R}\tau_{R} & -\delta_{R} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} \tau_{R} + 1 \\ -\delta_{R} \end{bmatrix}, & x \geq 0. \end{cases}$$

Now f_{ξ}^2 can be transformed to $f_{g(\xi)}$, where g is the renormalisation operator

$$g:\mathbb{R}^4 o\mathbb{R}^4$$
, given by $ilde{ au}_L= au_R^2-2\delta_R, \ ilde{\delta}_L=\delta_R^2, \ ilde{ au}_R= au_L au_R-\delta_L-\delta_R, \ ilde{\delta}_R=\delta_L\delta_R.$

Renormalisation operator II

ightharpoonup We perform a coordinate change to put f_{ε}^2 in the normal form :

$$egin{bmatrix} egin{bmatrix} ilde{x}' \ ilde{y}' \end{bmatrix} = egin{bmatrix} ilde{ au}_L & 1 \ - ilde{\delta}_L & 0 \end{bmatrix} egin{bmatrix} ilde{x} \ ilde{y} \end{bmatrix} + egin{bmatrix} 1 \ 0 \end{bmatrix}, & ilde{x} \leq 0, \ ilde{ au}_R & 1 \ - ilde{\delta}_R & 0 \end{bmatrix} egin{bmatrix} ilde{x} \ ilde{y} \end{bmatrix} + egin{bmatrix} 1 \ 0 \end{bmatrix}, & ilde{x} \geq 0. \end{bmatrix}$$

Results I

We consider the parameter region

$$\Phi = \left\{ \xi \in \mathbb{R}^4 \middle| \tau_L > \delta_L + 1, \delta_L > 0, \tau_R < -(\delta_R + 1), \delta_R > 0 \right\}.$$

The stable and the unstable manifolds of the fixed point Y intersect if and only if $\phi(\xi) \leq 0$, where,

$$\phi(\xi) = \delta_R - (\tau_R + \delta_L + \delta_R - (1 + \tau_R)\lambda_L^u)\lambda_L^u.$$

▶ Banerjee, Yorke and Grebogi observed that an attractor is often destroyed at $\phi(\xi) = 0$ which is a homoclinic bifurcation, and thus focused their attention on the region

$$\Phi_{\mathrm{BYG}} = \{ \xi \in \Phi | \phi(\xi) > 0 \}.$$

Results II

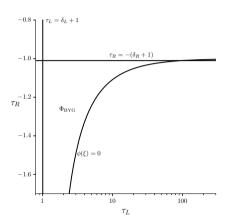


Figure: Sketch of the parameter region $\Phi_{\rm BYG}$, with $\delta_L = \delta_R = 0.01$.

Results III

For all $n \ge 0$ let

$$\zeta_n(\xi) = \phi(g^n(\xi)),$$

where $\zeta_n(\xi) = 0$ is the n^{th} preimage of $\phi(\xi) = 0$ under the operator g.

▶ The regions \mathcal{R}_n for all $n \ge 0$ are thus generated, having the form:

$$\mathcal{R}_n = \{\xi \in \Phi | \zeta_n(\xi) > 0, \zeta_{n+1}(\xi) \leq 0\}.$$

Results IV

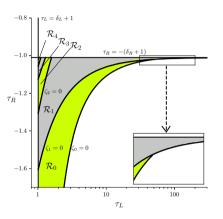


Figure: The sketch of two dimensional cross-section of \mathcal{R}_n when $\delta_L = \delta_R = 0.01$.

Results V

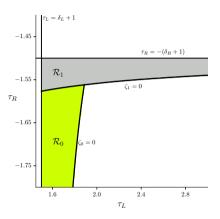


Figure: The sketch of two dimensional cross-section of \mathcal{R}_n when $\delta_L = \delta_R = 0.5$.

Results VI

Theorem

The \mathcal{R}_n are non-empty, mutually disjoint, and converge to the fixed point (1,0,-1,0) as $n \to \infty$. Moreover,

$$\Phi_{\mathrm{BYG}} \subset \bigcup_{n=0}^{\infty} \mathcal{R}_n.$$

► Let,

$$\Lambda(\xi)=\operatorname{cl}(W^u(X)).$$

Theorem

For the map f_{ξ} with any $\xi \in \mathcal{R}_0$, $\Lambda(\xi)$ is bounded, connected, and invariant. Moreover, $\Lambda(\xi)$ is chaotic (positive Lyapunov exponent).

Results VII

Theorem

For any $\xi \in \mathcal{R}_n$ where $n \geq 0$, $g^n(\xi) \in \mathcal{R}_0$ and there exist mutually disjoint sets $S_0, S_1, \dots, S_{2^n-1} \subset \mathbb{R}^2$ such that $f_{\xi}(S_i) = S_{(i+1) \mod 2^n}$ and

$$|f_{\xi}^{2^n}|_{S_i}$$
 is affinely conjugate to $|f_{g^n(\xi)}|_{\Lambda(g^n(\xi))}$

for each $i \in \{0, 1, \dots, 2^n - 1\}$. Moreover,

$$\bigcup_{i=0}^{2^n-1} S_i = \operatorname{cl}(W^u(\gamma_n)),$$

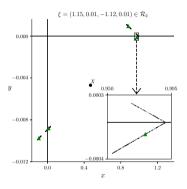
where γ_n is a saddle-type periodic solution of our map f_{ξ} having the symbolic itinerary $\mathcal{F}^n(R)$ given by Table 1.

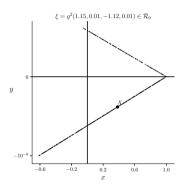
Results VIII

n	$\mathcal{F}^n(\mathcal{W})$
0	R
1	LR
2	RRLR
3	LRLRRRLR
4	RRLRRRLRLRRRLR

Table: The first 5 words in the sequence generated by repeatedly applying the substitution rule $(L,R)\mapsto (RR,LR)$ to $\mathcal{W}=R$.

Results IX





Summary

- We have used renormalization to explain how the parameter space Φ_{BYG} is divided into regions according to the number of connected components of an attractor.
- ▶ It remains to better understand the attractor \mathcal{R}_0 more and determine the analogue of Φ_{BYG} for higher dimensional maps.
- Our results have been submitted to *Int. J. Bifurcation Chaos* (arXiv:2109.09242, 2021).

Acknowledgements

Our research is supported by Marsden Fund contract MAU1809, managed by Royal Society Te Aparangi.

MARSDEN FUND TE PŪTEA RANGAHAU A MARSDEN

The End

Thank you! Questions?